Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 983: 19

Answer

$$V = 4$$

Work Step by Step

$$\eqalign{ & {\text{The volume of the solid is given by}} \cr & V = \iint\limits_R zdA,{\text{ }}z = \frac{y}{2} \cr & {\text{Let the region be }} \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant y \leqslant 2,{\text{ }}0 \leqslant x \leqslant 4} \right\} \cr & V = \iint\limits_R zdA = \int_0^2 {\int_0^4 {\frac{y}{2}} } dxdy \cr & {\text{Integrate with respect to }}x \cr & V = \int_0^2 {\left[ {\frac{{xy}}{2}} \right]} _0^4dy \cr & V = \int_0^2 {\left[ {\frac{{4y}}{2} - \frac{{0y}}{2}} \right]} dy \cr & V = \int_0^2 {2y} dy \cr & {\text{Integrate}} \cr & V = \left[ {{y^2}} \right]_0^2 \cr & V = {2^2} - {0^2} \cr & V = 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.