Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 983: 20

Answer

$$V = 32$$

Work Step by Step

$$\eqalign{ & {\text{The volume of the solid is given by}} \cr & V = \iint\limits_R zdA,{\text{ }}z = 6 - 2y \cr & {\text{Let the region be}} \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant y \leqslant 2,{\text{ }}0 \leqslant x \leqslant 4} \right\} \cr & V = \iint\limits_R zdA = \int_0^2 {\int_0^4 {\left( {6 - 2y} \right)} } dxdy \cr & {\text{Integrate with respect to }}x \cr & V = \int_0^2 {\left[ {6x - 2xy} \right]_0^4} dy \cr & V = \int_0^2 {\left[ {\left( {6\left( 4 \right) - 2\left( 4 \right)y} \right) - \left( {6\left( 0 \right) - 2\left( 0 \right)y} \right)} \right]} dy \cr & V = \int_0^2 {\left( {24 - 8y} \right)} dy \cr & {\text{Integrate}} \cr & V = \left[ {24y - 4{y^2}} \right]_0^2 \cr & V = \left[ {24\left( 2 \right) - 4{{\left( 2 \right)}^2}} \right] - \left[ {24\left( 0 \right) - 4{{\left( 0 \right)}^2}} \right] \cr & V = 32 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.