Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 983: 25

Answer

$$V = 1$$

Work Step by Step

$$\eqalign{ & z = \frac{1}{{{{\left( {x + 1} \right)}^2}{{\left( {y + 1} \right)}^2}}} \cr & {\text{The volume of the solid is given by}} \cr & V = \iint\limits_R zdA,{\text{ }}z = \frac{1}{{{{\left( {x + 1} \right)}^2}{{\left( {y + 1} \right)}^2}}} \cr & {\text{Let the region be }} \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant y \leqslant \infty ,{\text{ }}0 \leqslant x \leqslant \infty } \right\} \cr & V = \iint\limits_R zdA = \int_0^\infty {\int_0^\infty {\frac{1}{{{{\left( {x + 1} \right)}^2}{{\left( {y + 1} \right)}^2}}}} } dydx \cr & V = \int_0^\infty {\frac{1}{{{{\left( {x + 1} \right)}^2}}}\left[ {\int_0^\infty {\frac{1}{{{{\left( {y + 1} \right)}^2}}}} dy} \right]} dx{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Integrate }}\int_0^\infty {\frac{1}{{{{\left( {y + 1} \right)}^2}}}} dy{\text{ with respect to }}y \cr & \int_0^\infty {\frac{1}{{{{\left( {y + 1} \right)}^2}}}} dy = - \mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{1}{{y + 1}}} dy \cr & = - \mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{{b + 1}} - \frac{1}{{0 + 1}}} \right] \cr & = - \mathop {\lim }\limits_{b \to \infty } \left[ {\frac{1}{{b + 1}} - 1} \right] \cr & = - \left[ {\frac{1}{{\infty + 1}} - 1} \right] \cr & = 1 \cr & {\text{Substitute the previous result in }}\left( {\bf{1}} \right) \cr & V = \int_0^\infty {\frac{1}{{{{\left( {x + 1} \right)}^2}}}\left[ 1 \right]} dx \cr & V = \int_0^\infty {\frac{1}{{{{\left( {x + 1} \right)}^2}}}} dx \cr & {\text{By symmetry }}\int_0^\infty {\frac{1}{{{{\left( {x + 1} \right)}^2}}}} dx = 1,{\text{ then}} \cr & V = 1\left( 1 \right) \cr & V = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.