Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 983: 6

Answer

\[\frac{{{\pi }^{2}}}{8}\]

Work Step by Step

\[\begin{align} & \int_{0}^{\pi }{\int_{0}^{\pi /2}{{{\sin }^{2}}x}{{\cos }^{2}}y}dydx \\ & =\int_{0}^{\pi }{{{\sin }^{2}}x\left[ \int_{0}^{\pi /2}{{{\cos }^{2}}y}dy \right]}dx \\ & \text{Integrating }\int_{0}^{\pi /2}{{{\cos }^{2}}y}dy \\ & \int_{0}^{\pi /2}{{{\cos }^{2}}y}dy=\int_{0}^{\pi /2}{\left( \frac{1+\cos 2y}{2} \right)}dy \\ & =\left[ \frac{1}{2}y+\frac{1}{4}\sin 2y \right]_{0}^{\pi /2} \\ & =\left[ \frac{1}{2}\left( \frac{\pi }{2} \right)+\frac{1}{4}\sin 2\left( \frac{\pi }{2} \right) \right]-\left[ \frac{1}{2}\left( 0 \right)+\frac{1}{4}\sin 2\left( 0 \right) \right] \\ & =\frac{\pi }{4} \\ & \text{Then,} \\ & \int_{0}^{\pi }{{{\sin }^{2}}x\left[ \int_{0}^{\pi /2}{{{\cos }^{2}}y}dy \right]}dx=\frac{\pi }{4}\int_{0}^{\pi }{{{\sin }^{2}}x}dx \\ & =\frac{\pi }{4}\int_{0}^{\pi }{\left( \frac{1-\cos 2x}{2} \right)}dx \\ & =\frac{\pi }{4}\left[ \frac{1}{2}x-\frac{1}{4}\sin 2x \right]_{0}^{\pi } \\ & =\frac{\pi }{4}\left[ \frac{1}{2}\left( \pi \right)-\frac{1}{4}\sin 2\left( \pi \right) \right]-\frac{\pi }{4}\left[ \frac{1}{2}\left( 0 \right)-\frac{1}{4}\sin 2\left( 0 \right) \right] \\ & =\frac{{{\pi }^{2}}}{8} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.