Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 983: 18

Answer

$$\frac{{625}}{4}\pi $$

Work Step by Step

$$\eqalign{ & \iint\limits_R {\left( {{x^2} + {y^2}} \right)}dA \cr & {\text{Let the region be }} \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant y \leqslant \sqrt {25 - {x^2}} ,{\text{ }} - 5 \leqslant x \leqslant 5} \right\} \cr & \iint\limits_R xdA = \int_{ - 5}^5 {\int_0^{\sqrt {25 - {x^2}} } {\left( {{x^2} + {y^2}} \right)} } dydx \cr & {\text{By symmetry}} \cr & = 2\int_0^5 {\int_0^{\sqrt {25 - {x^2}} } {\left( {{x^2} + {y^2}} \right)} } dydx \cr & {\text{Integrate with respect to }}y \cr & = 2\int_0^5 {\left[ {{x^2}y + \frac{{{y^3}}}{3}} \right]_0^{\sqrt {25 - {x^2}} }} dx \cr & = 2\int_0^5 {\left[ {{x^2}\sqrt {25 - {x^2}} + \frac{{{{\left( {\sqrt {25 - {x^2}} } \right)}^3}}}{3}} \right]} dx \cr & = 2\int_0^5 {\left[ {{x^2}\sqrt {25 - {x^2}} + \frac{{\left( {25 - {x^2}} \right)\sqrt {25 - {x^2}} }}{3}} \right]} dx \cr & {\text{Integrate by using a CAS}} \cr & = \frac{{625}}{4}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.