Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.2 Exercises - Page 983: 14

Answer

$${e^4} - 13$$

Work Step by Step

$$\eqalign{ & \iint\limits_R {x{e^y}dA} \cr & {\text{Let the region }}R :y = 4 - x,{\text{ }}y = 0,{\text{ }}x = 0 \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant y \leqslant 4 - x,{\text{ }}0 \leqslant x \leqslant 4} \right\} \cr & {\text{Therefore,}} \cr & \iint\limits_R {x{e^y}dA} = \int_0^4 {\int_0^{4 - x} {x{e^y}dy} dx} \cr & = \int_0^4 {x\left[ {\int_0^{4 - x} {{e^y}dy} } \right]dx} \cr & {\text{Integrate with respect to }}y \cr & = \int_0^4 {x\left[ {{e^y}} \right]_0^{4 - x}dx} \cr & = \int_0^4 {x\left( {{e^{4 - x}} - {e^0}} \right)dx} \cr & = \int_0^4 {\left( {x{e^{4 - x}} - x} \right)dx} \cr & {\text{Integrating}} \cr & = \left[ { - x{e^{4 - x}} - {e^{4 - x}} - \frac{1}{2}{x^2}} \right]_0^4 \cr & = \left[ { - \left( 4 \right){e^{4 - 4}} - {e^{4 - 4}} - \frac{1}{2}{{\left( 4 \right)}^2}} \right] - \left[ { - \left( 0 \right){e^{4 - 0}} - {e^{4 - 0}} - \frac{1}{2}{{\left( 0 \right)}^2}} \right] \cr & = \left( { - 4 - 1 - 8} \right) - \left[ {0 - {e^4} - 0} \right] \cr & = {e^4} - 13 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.