Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 897: 99

Answer

$$\frac{{\partial z}}{{\partial t}} = {c^2}\frac{{{\partial ^2}z}}{{\partial {x^2}}}$$

Work Step by Step

$$\eqalign{ & z = {e^{ - t}}\cos \frac{x}{c} \cr & {\text{Find }}\frac{{\partial z}}{{\partial t}}{\text{ and }}\frac{{{\partial ^2}z}}{{\partial {x^2}}} \cr & \frac{{\partial z}}{{\partial t}} = \frac{\partial }{{\partial t}}\left[ {{e^{ - t}}\cos \frac{x}{c}} \right] = - {e^{ - t}}\cos \frac{x}{c} \cr & and \cr & \frac{{\partial z}}{{\partial x}} = \frac{\partial }{{\partial x}}\left[ {{e^{ - t}}\cos \frac{x}{c}} \right] = - {e^{ - t}}\sin \left( {\frac{x}{c}} \right)\left( {\frac{1}{c}} \right) = - \frac{1}{c}{e^{ - t}}\sin \frac{x}{c} \cr & \frac{{{\partial ^2}z}}{{\partial {x^2}}} = \frac{\partial }{{\partial x}}\left[ { - \frac{1}{c}{e^{ - t}}\sin \frac{x}{c}} \right] = - \frac{1}{{{c^2}}}{e^{ - t}}\cos \frac{x}{c} \cr & {\text{Therefore,}} \cr & \frac{{\partial z}}{{\partial t}} = - {e^{ - t}}\cos \frac{x}{c} = {c^2}\underbrace {\left( { - \frac{1}{{{c^2}}}{e^{ - t}}\cos \frac{x}{c}} \right)}_{\frac{{{\partial ^2}z}}{{\partial {x^2}}}} \cr & \frac{{\partial z}}{{\partial t}} = {c^2}\frac{{{\partial ^2}z}}{{\partial {x^2}}}{\text{ }}\left( {{\text{Verified}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.