Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 897: 87

Answer

\begin{aligned} f_{x}(x, y, z) &= y z \\ f_{y}(x, y, z) & =x z \\ f_{y y}(x, y, z) &= 0 \\ f_{x y}(x, y, z) & =z \\ f_{ y x}(x, y, z) &= z \\ f_{yy x}(x, y, z)&=0 \\ f_{x y y}(x, y, z)& =0 \\ f_{y xy}(x, y, z)& =0 \end{aligned} And $$ f_{x y y} =f_{y x y}=f_{yy x}=0$$

Work Step by Step

Given $$f(x, y, z) =x y z$$ So, we have \begin{aligned} f_{x}(x, y, z) &= \frac{\partial f(x,y)}{\partial x}=y z \\ f_{y}(x, y, z) &= \frac{\partial f(x,y)}{\partial y}=x z \\ f_{y y}(x, y, z) &= \frac{\partial^2 f(x,y)}{\partial y^2}=0 \\ f_{x y}(x, y, z) &= \frac{\partial^2 f(x,y)}{\partial y\partial x}=z \\ f_{ y x}(x, y, z) &= \frac{\partial^2 f(x,y)}{\partial z\partial y}=z \\ f_{yy x}(x, y, z)&= \frac{\partial^3 f(x,y)}{\partial x\partial y\partial y}=0 \\ f_{x y y}(x, y, z)&= \frac{\partial^3 f(x,y)}{\partial x\partial y\partial y}=0 \\ f_{y xy}(x, y, z)&= \frac{\partial^3 f(x,y)}{\partial y\partial x\partial y}=0 \end{aligned} So, we get $$ f_{x y y} =f_{y x y}=f_{yy x}=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.