Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 897: 96

Answer

$$\frac{{{\partial ^2}z}}{{\partial {t^2}}} = - 16{c^2}\cos \left( {4x + 4ct} \right) = {c^2}\underbrace {\left[ { - 16\cos \left( {4x + 4ct} \right)} \right]}_{\frac{{{\partial ^2}z}}{{\partial {x^2}}}}$$

Work Step by Step

$$\eqalign{ & z = \cos \left( {4x + 4ct} \right) \cr & {\text{Find }}\frac{{{\partial ^2}z}}{{\partial {t^2}}}{\text{ and }}\frac{{{\partial ^2}z}}{{\partial {x^2}}} \cr & \frac{{\partial z}}{{\partial t}} = \frac{\partial }{{\partial t}}\left[ {\cos \left( {4x + 4ct} \right)} \right] = - 4c\sin \left( {4x + 4ct} \right) \cr & \frac{{{\partial ^2}z}}{{\partial {t^2}}} = \frac{\partial }{{\partial t}}\left[ { - 4c\sin \left( {4x + 4ct} \right)} \right] = - 16{c^2}\cos \left( {4x + 4ct} \right) \cr & and \cr & \frac{{\partial z}}{{\partial x}} = \frac{\partial }{{\partial x}}\left[ {\cos \left( {4x + 4ct} \right)} \right] = - 4\sin \left( {4x + 4ct} \right) \cr & \frac{{{\partial ^2}z}}{{\partial {x^2}}} = \frac{\partial }{{\partial x}}\left[ { - 4\sin \left( {4x + 4ct} \right)} \right] = - 16\cos \left( {4x + 4ct} \right) \cr & {\text{Therefore,}} \cr & \frac{{{\partial ^2}z}}{{\partial {t^2}}} = - 16{c^2}\cos \left( {4x + 4ct} \right) = {c^2}\underbrace {\left[ { - 16\cos \left( {4x + 4ct} \right)} \right]}_{\frac{{{\partial ^2}z}}{{\partial {x^2}}}} \cr & \frac{{{\partial ^2}z}}{{\partial {t^2}}} = {c^2}\frac{{{\partial ^2}z}}{{\partial {x^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.