Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 897: 80

Answer

\begin{aligned} \\ \frac{\partial z}{\partial x} &=2 e^{y}+3 y e^{-x} \\ \end{aligned}\begin{aligned} \frac{\partial^{2} z}{\partial x^{2}} &= -3 y e^{-x} \\ \end{aligned}\begin{aligned} \frac{\partial^{2} z}{\partial y \partial x} &=2 e^{y}+3 e^{-x} \\ \end{aligned} \begin{aligned} \frac{\partial z}{\partial y } &=2 x e^{y}-3 e^{-x} \\ \end{aligned}\begin{aligned} \frac{\partial^{2} z}{\partial y^{2}} &=2 x e^{y} \end{aligned}\begin{aligned} \frac{\partial^{2} z}{\partial x \partial y} &=2 e^{y}+3 e^{-x}\end{aligned} and we note $$ \frac{\partial^{2} z}{\partial x \partial y}= \frac{\partial^{2} z}{\partial y \partial x}$$

Work Step by Step

Given $$z= 2 x e^{y}-3 y e^{-x}$$ The partial derivative with respect to $x$ is: \begin{aligned} \\ \frac{\partial z}{\partial x} &=2 e^{y}+3 y e^{-x} \\ \end{aligned} The second partial derivative with respect to $x$ is: \begin{aligned} \frac{\partial^{2} z}{\partial x^{2}} &= -3 y e^{-x} \\ \end{aligned} \begin{aligned} \frac{\partial^{2} z}{\partial y \partial x} &=2 e^{y}+3 e^{-x} \\ \end{aligned} The partial derivative with respect to $y$ is: \begin{aligned} \frac{\partial z}{\partial y } &=2 x e^{y}-3 e^{-x} \\ \end{aligned} The second partial derivative with respect to $y$ is: \begin{aligned} \frac{\partial^{2} z}{\partial y^{2}} &=2 x e^{y} \end{aligned} \begin{aligned} \frac{\partial^{2} z}{\partial x \partial y} &=2 e^{y}+3 e^{-x}\end{aligned} We see that the second mixed partial derivatives are equal. $$ \frac{\partial^{2} z}{\partial x \partial y}= \frac{\partial^{2} z}{\partial y \partial x}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.