Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 897: 78

Answer

\begin{aligned} \frac{\partial^{2} z}{\partial x^{2}} &= -\frac{1}{(x-y)^{2}} \\ \frac{\partial^{2} z}{\partial y \partial x} &=\frac{1}{(x-y)^{2}} \end{aligned} $$\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}=\frac{1}{(x-y)^{2}}$$

Work Step by Step

Given $$z =\ln (x-y)$$ So, we get \begin{aligned} \frac{\partial z}{\partial x} &=\frac{1}{x-y}=(x-y)^{-1 }\\ \frac{\partial^{2} z}{\partial x^{2}} &=(-1)(x-y)^{-1-1 }=-\frac{1}{(x-y)^{2}} \\ \frac{\partial^{2} z}{\partial y \partial x} &=(-1)(-1)(x-y)^{-1-1 }=\frac{1}{(x-y)^{2}} \end{aligned} and we have \begin{aligned} \frac{\partial z}{\partial y} &=\frac{(-1)}{x-y}=\frac{1}{y-x} =(y-x)^{-1}\\ \frac{\partial^{2} z}{\partial y^{2}} &=(-1)(y-x)^{-1-1}=-\frac{1}{(x-y)^{2}} \\ \frac{\partial^{2} z}{\partial x \partial y} &=(1)(y-x)^{-1-1}=\frac{1}{(x-y)^{2}} \end{aligned} we can observe that $$\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.