Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 897: 89

Answer

$${f_{xyy}} = {f_{yxy}} = {f_{yyx}} = {z^2}{e^{ - x}}\sin yz$$

Work Step by Step

$$\eqalign{ & f\left( {x,y,z} \right) = {e^{ - x}}\sin yz \cr & {\text{Find }}{f_{xyy}}\left( {x,y,z} \right) \cr & {f_x} = \frac{\partial }{{\partial x}}\left[ {{e^{ - x}}\sin yz} \right] = - {e^{ - x}}\sin yz \cr & {f_{xy}} = \frac{\partial }{{\partial y}}\left[ { - {e^{ - x}}\sin yz} \right] = - z{e^{ - x}}\cos yz \cr & {f_{xyy}} = \frac{\partial }{{\partial y}}\left[ { - z{e^{ - x}}\cos yz} \right] = {z^2}{e^{ - x}}\sin yz \cr & {\text{Find }}{f_{yxy}}\left( {x,y,z} \right) \cr & {f_y} = \frac{\partial }{{\partial y}}\left[ {{e^{ - x}}\sin yz} \right] = z{e^{ - x}}\cos yz \cr & {f_{yx}} = \frac{\partial }{{\partial x}}\left[ {z{e^{ - x}}\cos yz} \right] = - z{e^{ - x}}\cos yz \cr & {f_{yxy}} = \frac{\partial }{{\partial y}}\left[ { - z{e^{ - x}}\cos yz} \right] = {z^2}{e^{ - x}}\sin yz \cr & {\text{Find }}{f_{yyx}}\left( {x,y,z} \right) \cr & {f_{yy}} = \frac{\partial }{{\partial y}}\left[ {z{e^{ - x}}\cos yz} \right] = - {z^2}{e^{ - x}}\sin yz \cr & {f_{yyx}} = \frac{\partial }{{\partial x}}\left[ { - {z^2}{e^{ - x}}\sin yz} \right] = {z^2}{e^{ - x}}\sin yz \cr & {\text{Therefore,}} \cr & {f_{xyy}} = {f_{yxy}} = {f_{yyx}} = {z^2}{e^{ - x}}\sin yz \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.