Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 897: 92

Answer

$$ - \frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\sin x + \frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\sin x = 0$$

Work Step by Step

$$\eqalign{ & z = \frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\sin x \cr & {\text{Find }}\frac{{{\partial ^2}z}}{{\partial {x^2}}}{\text{ and }}\frac{{{\partial ^2}z}}{{\partial {y^2}}} \cr & \frac{{\partial z}}{{\partial x}} = \frac{\partial }{{\partial x}}\left[ {\frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\sin x} \right] = \frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\cos x \cr & \frac{{{\partial ^2}z}}{{\partial {x^2}}} = \frac{\partial }{{\partial x}}\left[ {\frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\cos x} \right] = - \frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\sin x \cr & and \cr & \frac{{\partial z}}{{\partial y}} = \frac{\partial }{{\partial y}}\left[ {\frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\sin x} \right] = \frac{1}{2}\left( {{e^y} + {e^{ - y}}} \right)\sin x \cr & \frac{{{\partial ^2}z}}{{\partial {y^2}}} = \frac{\partial }{{\partial y}}\left[ {\frac{1}{2}\left( {{e^y} + {e^{ - y}}} \right)\sin x} \right] = \frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\sin x \cr & {\text{Substitute into Laplace's equation }}\frac{{{\partial ^2}z}}{{\partial {x^2}}} + \frac{{{\partial ^2}z}}{{\partial {y^2}}} = 0 \cr & \underbrace {\frac{{{\partial ^2}z}}{{\partial {x^2}}} + \frac{{{\partial ^2}z}}{{\partial {y^2}}} = 0}_ \downarrow \cr & - \frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\sin x + \frac{1}{2}\left( {{e^y} - {e^{ - y}}} \right)\sin x = 0 \cr & 0 = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.