Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 897: 88

Answer

$${f_{xyy}} = {f_{yxy}} = {f_{yyx}} = 0$$

Work Step by Step

$$\eqalign{ & f\left( {x,y,z} \right) = {x^2} - 3xy + 4yz + {z^3} \cr & {\text{Find }}{f_{xyy}}\left( {x,y,z} \right) \cr & {f_x} = \frac{\partial }{{\partial x}}\left[ {{x^2} - 3xy + 4yz + {z^3}} \right] = 2x - 3y \cr & {f_{xy}} = \frac{\partial }{{\partial y}}\left[ {2x - 3y} \right] = - 3 \cr & {f_{xyy}} = \frac{\partial }{{\partial y}}\left[ { - 3} \right] = 0 \cr & {\text{Find }}{f_{yxy}}\left( {x,y,z} \right) \cr & {f_y} = \frac{\partial }{{\partial y}}\left[ {{x^2} - 3xy + 4yz + {z^3}} \right] = 3x + 4z \cr & {f_{yx}} = \frac{\partial }{{\partial x}}\left[ {3x + 4z} \right] = 3 \cr & {f_{yxy}} = \frac{\partial }{{\partial y}}\left[ 3 \right] = 0 \cr & {\text{Find }}{f_{yyx}}\left( {x,y,z} \right) \cr & {f_{yy}} = \frac{\partial }{{\partial y}}\left[ {3x + 4z} \right] = 0 \cr & {f_{yyx}} = \frac{\partial }{{\partial x}}\left[ 0 \right] = 0 \cr & {\text{Therefore,}} \cr & {f_{xyy}} = {f_{yxy}} = {f_{yyx}} = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.