Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.3 Exercises - Page 897: 81

Answer

$$\eqalign{ & {z_{xx}} = - {y^2}\cos xy \cr & {z_{xy}} = - y\left( {x\cos xy} \right) - \sin xy \cr & {z_{yy}} = - {x^2}\cos xy \cr & {z_{yx}} = - xy\cos xy - \sin xy \cr} $$

Work Step by Step

$$\eqalign{ & z = \cos xy \cr & {\text{Calculate the second partial derivatives }}{z_{xx}},{\text{ }}{z_{yy}},{\text{ }}{z_{xy}},{\text{ }}{x_{yx}} \cr & {z_x} = \frac{\partial }{{\partial x}}\left[ {\cos xy} \right] \cr & {z_x} = - y\sin xy \cr & {z_{xy}} = \frac{\partial }{{\partial y}}\left[ { - y\sin xy} \right] \cr & {z_{xy}} = - y\left( {x\cos xy} \right) - \sin xy \cr & {z_{xy}} = - xy\cos xy - \sin xy \cr & {z_{xx}} = \frac{\partial }{{\partial y}}\left[ { - y\sin xy} \right] = - {y^2}\cos xy \cr & and \cr & {z_y} = \frac{\partial }{{\partial y}}\left[ {\cos xy} \right] = - x\sin xy \cr & {z_{yx}} = \frac{\partial }{{\partial y}}\left[ { - x\sin xy} \right] = - xy\cos xy - \sin xy \cr & {z_{yy}} = \frac{\partial }{{\partial y}}\left[ { - x\sin xy} \right] = - {x^2}\cos xy \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.