Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 62

Answer

$${\mathbf{r}(t) = (\arctan \mathfrak{t} +2-\frac{\pi}{4})\mathbf{i}+(1-\frac{1}{t}) \mathbf{j}+\ln t \mathbf{k}}$$

Work Step by Step

Given $$\mathbf{r}^{\prime}(t)=\frac{1}{1+t^{2}} \mathbf{i}+\frac{1}{t^{2}} \mathbf{j}+\frac{1}{t} \mathbf{k}, \quad \mathbf{r}(1)=2 \mathbf{i}$$ As we have $$\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t) dt$$ So, integrating on a component-by-component basis produces \begin{array}{l}{\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t)(t)dt=\int\left(\frac{1}{1+t^{2}} \mathbf{i}+\frac{1}{t^{2}} \mathbf{j}+\frac{1}{t} \mathbf{k}\right) d t\\ = \arctan \mathfrak{t} \mathbf{i}-\frac{1}{t} \mathbf{j}+\ln t \mathbf{k}+\mathbf{C}} \\ \text{since} \ \mathbf{r}(1)=2\mathbf{i} , \quad \text{so we get} \\ {\mathbf{r}(1)= \arctan 1 \mathbf{i}-1 \mathbf{j}+\ln1 \mathbf{k} +\mathbf{C}=2\mathbf{i} } \\ { \Rightarrow \mathbf{ C}=2\mathbf{i}- \frac{\pi}{4} \mathbf{i}+ \mathbf{j}= (2-\frac{\pi}{4})\mathbf{i}+ \mathbf{j}} \\ {\text {so we get }}\\ {\mathbf{r}(t)=\arctan \mathfrak{t} \mathbf{i}-\frac{1}{t} \mathbf{j}+\ln t \mathbf{k}+(2-\frac{\pi}{4})\mathbf{i}+ \mathbf{j}\\ = (\arctan \mathfrak{t} +2-\frac{\pi}{4})\mathbf{i}+(1-\frac{1}{t}) \mathbf{j}+\ln t \mathbf{k}}\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.