Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 53

Answer

$$\int_{0}^{\pi / 2}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+\mathbf{k}] d t=a \mathbf{i}+a \mathbf{j}+\frac{\pi}{2} \mathbf{k}$$

Work Step by Step

Given $$\int_{0}^{\pi / 2}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+\mathbf{k}] d t $$ Integrating on a component-by-component basis produces \begin{align} I&=\int_{0}^{\pi / 2}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+\mathbf{k}] d t\\ &=[a \sin t \mathbf{i}]_{0}^{\pi / 2}-[a \cos t \mathbf{j}]_{0}^{\pi / 2}+[t\mathbf{k}]_{0}^{\pi / 2}\\ &= a( \sin \frac{\pi}{2}-\sin 0) \mathbf{i} - a (\cos\frac{\pi}{2}-\cos0) \mathbf{j} + (\frac{\pi}{2}-0) \mathbf{k}] \\ &=a \mathbf{i}+a \mathbf{j}+\frac{\pi}{2} \mathbf{k} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.