Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 52

Answer

$$\int_{-1}^{1}\left(t \ \mathbf{i}+t^{3} \mathbf{j}+\sqrt[3]{t} \ \mathbf{k}\right) d t=0$$

Work Step by Step

Given $$\int_{-1}^{1}\left(t \ \mathbf{i}+t^{3} \mathbf{j}+\sqrt[3]{t} \ \mathbf{k}\right) d t $$ Integrating on a component-by-component basis produces \begin{align} \int_{-1}^{1}\left(t \ \mathbf{i}+t^{3} \mathbf{j}+\sqrt[3]{t} \mathbf{k}\right) d t&=\left[\frac{t^{2}}{2} \mathbf{i}\right]_{-1}^{1}+\left[\frac{t^{4}}{4} \mathbf{j}\right]_{-1}^{1}+\left[\frac{3}{4} t^{4 / 3} \mathbf{k}\right]_{-1}^{1}\\ &= (\frac{1}{2} -\frac{1}{2})\mathbf{i} + (\frac{1}{4} -\frac{1}{4})\mathbf{j} + (\frac{3}{4} -\frac{3}{4}) \mathbf{k} \\ &=0 \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.