Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 54

Answer

$$\int_{0}^{\pi / 4}[(\sec t \tan t) \mathbf{i}+(\tan t) \mathbf{j}+(2 \sin t \cos t) \mathbf{k}] d t=(\sqrt{2}-1) \mathbf{i}+\ln \sqrt{2} \ \mathbf{j}+\frac{1}{2} \mathbf{k}$$

Work Step by Step

Given $$\int_{0}^{\pi / 4}[(\sec t \tan t) \mathbf{i}+(\tan t) \mathbf{j}+(2 \sin t \cos t) \mathbf{k}] d t$$ Integrating on a component-by-component basis produces \begin{align} I&=\int_{0}^{\pi / 4}[(\sec t \tan t) \mathbf{i}+(\tan t) \mathbf{j}+(2 \sin t \cos t) \mathbf{k}] d t\\ &=\left[\sec t \mathbf{i}+\ln |\sec t| \mathbf{j}+\sin ^{2} t \mathbf{k}\right]_{0}^{\pi / 4}\\ &=(\sec \frac{\pi}{4}-\sec0) \mathbf{i}+(\ln \sec \frac{\pi}{4}-\ln \sec 0) \mathbf{j}+(\sin^2 \frac{\pi}{4}-\sin^20 ) \ \mathbf{k} \\ &=(\sqrt{2}-1) \mathbf{i}+\ln \sqrt{2} \mathbf{j}+\frac{1}{2} \mathbf{k} \\ \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.