Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 60

Answer

$$\mathbf{r}(t)=4 \cos t \mathbf{j}+3 \sin t \mathbf{k}$$

Work Step by Step

Given$$ \mathbf{r}^{\prime \prime}(t)=-4 \cos t \mathbf{j}-3 \sin t \mathbf{k}, \quad \mathbf{r}^{\prime}(0)=3 \mathbf{k}, \quad \mathbf{r}(0)=4 \mathbf{j}$$ As we have $$\mathbf{r^{\prime}}(t)=\int \mathbf{r}^{\prime \prime}(t) dt$$ and $$\mathbf{r^{}}(t)=\int \mathbf{r}^{\prime }(t) dt$$ So, integrating on a component-by-component basis produces \begin{array}{l} {\mathbf{r^{\prime}}(t)=\int \mathbf{r}^{ \prime\prime}(t)(t)dt=\int\left(-4 \cos t \mathbf{j}-3 \sin t \mathbf{k}\right) d t\\ = -4 \sin t \mathbf{j}+3 \cos t \mathbf{k}+\mathbf{C_1}} \\ \text{since} \ \mathbf{r^{\prime}}(0)=3 \mathbf{k}, \quad \text{we get} \\ {\mathbf{r^{\prime}}(0)= -4 \sin 0 \mathbf{j}+3\cos 0 \mathbf{k}+\mathbf{C_1}=3 \mathbf{k}} \\ { \Rightarrow \mathbf{C_1}=0} \\ {\text {so we get }}\\ {\mathbf{r^\prime}(t)=-4 \sin t \mathbf{j}+3 \cos t \mathbf{k}}\\ \\ {\text{Also we have}}\\ {\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t)(t)dt=\int\left(-4 \sin t \mathbf{j}+3 \cos t \mathbf{k}\right) d t\\ = 4 \cos t \mathbf{j}+3 \sin t \mathbf{k}+\mathbf{C}} \\ \text{since} \ \mathbf{r}(0)=4 \mathbf{j}, \quad \text{so we get} \\ {\mathbf{r}(0)= 4 \cos 0 \mathbf{j}+3\sin 0\mathbf{k}+\mathbf{C}=4 \mathbf{j}} \\ { \Rightarrow \mathbf{C}=0} \\ {\text {so we get }}\\ {\mathbf{r}(t)=4 \cos t \mathbf{j}+3 \sin t \mathbf{k}} \end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.