Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 59

Answer

$$\mathbf{r}(t)=600 \sqrt{3} \ t \mathbf{i}+(600 \ t -16 \ t^2) \mathbf{j} \mathbf{k}$$

Work Step by Step

Given$$ \mathbf{r}^{\prime \prime}(t)=-32 \mathbf{j}, \quad \mathbf{r}^{\prime}(0)=600 \sqrt{3} \mathbf{i}+600 \mathbf{j}, \quad \mathbf{r}(0)=\mathbf{0}$$ As we have $$\mathbf{r^{\prime}}(t)=\int \mathbf{r}^{\prime \prime}(t) dt$$ and $$\mathbf{r^{}}(t)=\int \mathbf{r}^{\prime }(t) dt$$ So, integrating on a component-by-component basis produces \begin{array}{l} {\mathbf{r^{\prime}}(t)=\int \mathbf{r}^{ \prime\prime}(t)(t)dt=\int\left(-32 \mathbf{j}\right) d t= -32 t\mathbf{j}+\mathbf{C_1}} \\ \text{since} \ \mathbf{r^{\prime}}(0)=600 \sqrt{3} \mathbf{i}+600 \mathbf{j}, \quad \text{we get} \\ {\mathbf{r^{\prime}}(0)= 0 \mathbf{j}+\mathbf{C_1}=600 \sqrt{3} \mathbf{i}+600 \mathbf{j}} \\ { \Rightarrow \mathbf{C_1}=600 \sqrt{3} \mathbf{i}+600 \mathbf{j}} \\ {\text {so we get }}\\ {\mathbf{r^\prime}(t)=-32t\mathbf{j}+600 \sqrt{3} \mathbf{i}+600 \mathbf{j}=600 \sqrt{3} \mathbf{i}+(600-32t) \mathbf{j}}\\ \\ {\text{Also we have}}\\ {\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t)(t)dt=\int\left(600 \sqrt{3} \mathbf{i}+(600-32t) \mathbf{j}\right) d t\\ = 600 \sqrt{3} \ t \mathbf{i}+(600 \ t -16 \ t^2) \mathbf{j}+\mathbf{C}} \\ \text{since} \ \mathbf{r}(0)=0, \quad \text{so we get} \\ {\mathbf{r}(0)= 0 \mathbf{i}+ 0\mathbf{j}+\mathbf{C}=0} \\ { \Rightarrow \mathbf{C}=0} \\ {\text {so we get }}\\ {\mathbf{r}(t)=600 \sqrt{3} \ t \mathbf{i}+(600 \ t -16 \ t^2) \mathbf{j}} \mathbf{k} \end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.