Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 61

Answer

$$\mathbf{r}(t)= (-\frac{1}{2} e^{-t^{2}}+1) \mathbf{i}+(e^{-t} -2)\mathbf{j}+(t +1)\ \mathbf{k}$$

Work Step by Step

Given$$ \mathbf{r}^{\prime}(t)=t e^{-t^{2}} \mathbf{i}-e^{-t} \mathbf{j}+\mathbf{k}, \quad \mathbf{r}(0)=\frac{1}{2} \mathbf{i}-\mathbf{j}+\mathbf{k}$$ As we have $$\mathbf{r}(t)=\int \mathbf{ r^{\prime}}(t)dt$$ So, integrating on a component-by-component basis produces \begin{array}{l}{\mathbf{r}(t)=\int \mathbf{ r^{\prime}}(t)dt=\int\left(t e^{-t^{2}} \mathbf{i}-e^{-t} \mathbf{j}+\mathbf{k}\right) d t\\ =-\frac{1}{2} e^{-t^{2}} \mathbf{i}+e^{-t} \mathbf{j}+t \ \mathbf{k}+\mathbf{C}} \\ \text{since} \ \mathbf{r}(0)=\frac{1}{2} \mathbf{i}-\mathbf{j}+\mathbf{k}, \quad \text{so we get} \\ {\mathbf{r}(0)=-\frac{1}{2} e^{0} \mathbf{i}+e^{0} \mathbf{j}+0 \ \mathbf{k}+\mathbf{C}=\frac{1}{2} \mathbf{i}-\mathbf{j}+\mathbf{k}} \\ {\mathbf{r}(0)=-\frac{1}{2} \mathbf{i}+ \mathbf{j}+0 \ \mathbf{k}+\mathbf{C}=\frac{1}{2} \mathbf{i}-\mathbf{j}+\mathbf{k}\\ \Rightarrow \mathbf{C}= \mathbf{i}-2\mathbf{j}+\mathbf{k}} \\ {\text {so we get }}\\ {\mathbf{r}(t)= -\frac{1}{2} e^{-t^{2}} \mathbf{i}+e^{-t} \mathbf{j}+t \ \mathbf{k}+\mathbf{i}-2\mathbf{j}+\mathbf{k}\\ =(-\frac{1}{2} e^{-t^{2}}+1) \mathbf{i}+(e^{-t} -2)\mathbf{j}+(t +1)\ \mathbf{k}}\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.