Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 57

Answer

$$ \mathbf{r}(t)=2 e^{2 t} \mathbf{i}+3\left(e^{t}-1\right) \mathbf{j}$$

Work Step by Step

Given$$ \mathbf{ \acute{r}}(t) =4 e^{2 t} \mathbf{i}+3 e^{t} \mathbf{j}, \ \ \ \mathbf{r}(0)=2 \mathbf{i}$$ As we have $$\mathbf{r}(t)=\int \mathbf{ \acute{r}}(t)dt$$ So, by integrating on a component-by-component basis we find \begin{array}{l}{\mathbf{r}(t)=\int \mathbf{ \acute{r}}(t)dt=\int\left(4 e^{2 t} \mathbf{i}+3 e^{t} \mathbf{j}\right) d t=2 e^{2 t} \mathbf{i}+3 e^{t} \mathbf{j}+\mathbf{C}} \\ \text{since} \ \mathbf{r}(0)=2 \mathbf{i}, \quad \text{we get} \\ {\mathbf{r}(0)=2 e^0\mathbf{i}+3 e^0\mathbf{j}+\mathbf{C}=2 \mathbf{i} } \\ {\mathbf{r}(0)=2 \mathbf{i}+3 \mathbf{j}+\mathbf{C}=2 \mathbf{i} \Rightarrow \mathbf{C}=-3 \mathbf{j}} \\ {\text {so we get }}\\ {\mathbf{r}(t)=2 e^{2 t} \mathbf{i}+3 e^{t} \mathbf{j}-3 \mathbf{j}=2 e^{2 t} \mathbf{i}+3\left(e^{t}-1\right) \mathbf{j}}\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.