Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 58

Answer

$${\mathbf{r}(t)= \mathbf{i}+\left(t^{3}+2\right) \mathbf{j}}+4 t^{\frac{3}{2}} \mathbf{k}$$

Work Step by Step

Given$$ \mathbf{r}^{\prime}(t)=\left(3 t^{2} \mathbf{j}+6 \sqrt{t} \mathbf{k}\right), \ \ \ \mathbf{r}(0)=\mathbf{i}+2 \mathbf{j}$$ As we have $$\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t) dt$$ So, integrating on a component-by-component basis produces \begin{array}{l}{\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t)(t)dt=\int\left(3 t^{2} \mathbf{j}+6 \sqrt{t} \mathbf{k}\right) d t= t^{3 } \mathbf{j}+4 t^{\frac{3}{2}} \mathbf{k}+\mathbf{C}} \\ \text{since} \ \mathbf{r}(0)=\mathbf{i}+2 \mathbf{j}, \quad \text{we get} \\ {\mathbf{r}(0)= 0 \mathbf{j}+ 0\mathbf{k}+\mathbf{C}=\mathbf{i}+2 \mathbf{j}} \\ { \Rightarrow \mathbf{C}=\mathbf{i}+2 \mathbf{j}} \\ {\text {so we get }}\\ {\mathbf{r}(t)=t^{3 } \mathbf{j}+4 t^{\frac{3}{2}} \mathbf{k}+\mathbf{i}+2 \mathbf{j}= \mathbf{i}+\left(t^{3}+2\right) \mathbf{j}}+4 t^{\frac{3}{2}} \mathbf{k}\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.