Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 831: 56

Answer

$$\int_{0}^{3} \left\|t \mathbf{i}+t^{2} \mathbf{j}\right\| d t=\frac{1}{3} \left(10 \sqrt{10}-1\right)$$

Work Step by Step

Given $$\int_{0}^{3}\left\|t \mathbf{i}+t^{2} \mathbf{j}\right\| d t $$ First, we have $$ \left\| t \mathbf{i}+t^{2} \mathbf{j}\right\|=\sqrt{( t\mathbf{i}+t^{2} \mathbf{j}) \cdot (t \mathbf{i}+t^{2} \mathbf{j})}=\sqrt{t^{2}+t^{4}}=t \sqrt{1+t^{2}} \text { for } t \geq 0$$ Secondly, integrating on a component-by-component basis produces \begin{align} I&=\int_{0}^{3}\left\|\mathbf{i}+t^{2} \mathbf{j}\right\| d t\\ &=\int_{0}^{3} t \sqrt{1+t^{2}} d t\\ &=\left[\frac{1}{3}\left(1+t^{2}\right)^{3 / 2}\right]_{0}^{3}\\ &=\frac{1}{3}\left(10^{3 / 2}-1\right)\\ &=\frac{1}{3} \left(10 \sqrt{10}-1\right) \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.