Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.1 Sequences - Exercises Set 9.1 - Page 606: 46

Answer

We show that $\mathop {\lim }\limits_{n \to + \infty } {a_n} = \ln 2$

Work Step by Step

We have the general term: ${a_n} = \dfrac{1}{n}\mathop \sum \limits_{k = 1}^n \dfrac{1}{{1 + \left( {k/n} \right)}}$ Let us consider a closed interval $\left[ {0,1} \right]$. We partition the interval into $n$ subintervals such that each subinterval have the same length given by $\Delta x = \dfrac{{1 - 0}}{n} = \dfrac{1}{n}$. A middle point in each subinterval is defined by ${x_k} = \dfrac{k}{n}$, for $k = 1,2,...n - 1$. Write $f\left( {{x_k}} \right) = \dfrac{1}{{1 + \left( {k/n} \right)}} = \dfrac{1}{{1 + {x_k}}}$. Thus, the general term of the sequence can be written as ${a_n} = \dfrac{1}{n}\mathop \sum \limits_{k = 1}^n \dfrac{1}{{1 + \left( {k/n} \right)}} = \mathop \sum \limits_{k = 1}^n f\left( {{x_k}} \right)\Delta x$ Next, we evaluate the limit: $\mathop {\lim }\limits_{n \to + \infty } {a_n} = \mathop {\lim }\limits_{n \to + \infty } \mathop \sum \limits_{k = 1}^n f\left( {{x_k}} \right)\Delta x$ Since $\Delta x = \dfrac{1}{n}$. The limit above is equivalent to $\mathop {\lim }\limits_{n \to + \infty } {a_n} = \mathop {\lim }\limits_{\Delta x \to 0} \mathop \sum \limits_{k = 1}^n f\left( {{x_k}} \right)\Delta x$ By definition 4.5.1 of Section 4.5, the limit on the right-hand side is the Riemann sum of a definite integral: $\mathop \smallint \limits_0^1 f\left( x \right){\rm{d}}x$ Thus, $\mathop {\lim }\limits_{n \to + \infty } {a_n} = \mathop {\lim }\limits_{\Delta x \to 0} \mathop \sum \limits_{k = 1}^n f\left( {{x_k}} \right)\Delta x = \mathop \smallint \limits_0^1 f\left( x \right){\rm{d}}x$ $\mathop {\lim }\limits_{n \to + \infty } {a_n} = \mathop \smallint \limits_0^1 \dfrac{1}{{1 + x}}{\rm{d}}x = \left[ {\ln \left( {1 + x} \right)} \right]_0^1 = \ln 2$ Hence, $\mathop {\lim }\limits_{n \to + \infty } {a_n} = \ln 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.