Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.1 Sequences - Exercises Set 9.1 - Page 606: 39

Answer

(a) $1,2,1,4,1,6,...$ (b) ${a_n} = \left\{ {\begin{array}{*{20}{c}} {n,}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{odd}}}\\ {\dfrac{1}{{{2^n}}},}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{even}}} \end{array}} \right.$, ${\ \ \ \ \ \ \ }$ for $n = 1,2,3,...$ (c) ${a_n} = \left\{ {\begin{array}{*{20}{c}} {\dfrac{1}{n},}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{odd}}}\\ {\dfrac{1}{{n + 1}},}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{even}}} \end{array}} \right.$, ${\ \ \ \ \ \ \ }$ for $n = 1,2,3,...$ (d) The sequence in part (a) diverges. The sequence in part (b) diverges. The sequence in part (c) converges. It converges to zero.

Work Step by Step

(a) Starting with $n=1$, $1,2,1,4,1,6,...$ (b) We have $1,\dfrac{1}{{{2^2}}},3,\dfrac{1}{{{2^4}}},5,\dfrac{1}{{{2^6}}},...$ Thus, the general term is ${a_n} = \left\{ {\begin{array}{*{20}{c}} {n,}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{odd}}}\\ {\dfrac{1}{{{2^n}}},}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{even}}} \end{array}} \right.$, ${\ \ \ \ \ \ \ }$ for $n = 1,2,3,...$ (c) We have $1,\dfrac{1}{3},\dfrac{1}{3},\dfrac{1}{5},\dfrac{1}{5},\dfrac{1}{7},\dfrac{1}{7},\dfrac{1}{9},\dfrac{1}{9},...$ Thus, the general term is ${a_n} = \left\{ {\begin{array}{*{20}{c}} {\dfrac{1}{n},}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{odd}}}\\ {\dfrac{1}{{n + 1}},}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{even}}} \end{array}} \right.$, ${\ \ \ \ \ \ \ }$ for $n = 1,2,3,...$ (d) Part (a): The sequences $\left\{ {{a_n}} \right\}$, where ${a_n} = \left\{ {\begin{array}{*{20}{c}} {1,}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{odd}}}\\ {n,}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{even}}} \end{array}} \right.$, ${\ \ \ \ \ \ \ }$ for $n = 1,2,3,...$ does not converge to some finite limit as $n \to \infty $, but oscillate between $1$ and $\infty $. Therefore, by definition it diverges. Part (b): The sequences $\left\{ {{a_n}} \right\}$, where ${a_n} = \left\{ {\begin{array}{*{20}{c}} {n,}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{odd}}}\\ {\dfrac{1}{{{2^n}}},}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{even}}} \end{array}} \right.$, ${\ \ \ \ \ \ \ }$ for $n = 1,2,3,...$ does not converge to some finite limit as $n \to \infty $, but oscillate between $\infty $ and $0$. Therefore, by definition it diverges. Part (c): The sequences $\left\{ {{a_n}} \right\}$, where ${a_n} = \left\{ {\begin{array}{*{20}{c}} {\dfrac{1}{n},}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{odd}}}\\ {\dfrac{1}{{n + 1}},}&{{\rm{if}}}&n&{{\rm{is}}}&{{\rm{even}}} \end{array}} \right.$, ${\ \ \ \ \ \ \ }$ for $n = 1,2,3,...$ approaches zero for both odd and even terms as $n \to \infty $. Thus, it converges to zero. $\mathop {\lim }\limits_{n \to \infty } {a_n} = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.