Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.1 Sequences - Exercises Set 9.1 - Page 606: 29

Answer

The general term is ${a_n} = \left( {\sqrt {n + 1} - \sqrt {n + 2} } \right)$. The sequence converges. The limit of the sequence: $\mathop {\lim }\limits_{n \to \infty } \left( {\sqrt {n + 1} - \sqrt {n + 2} } \right) = 0$

Work Step by Step

1. Starting with $n=1$, the general term is ${a_n} = \left( {\sqrt {n + 1} - \sqrt {n + 2} } \right)$ 2. Replacing $n$ by $x$, write $f\left( x \right) = \left( {\sqrt {x + 1} - \sqrt {x + 2} } \right)$. For large $x$, we have $\sqrt {x + 1} \approx \sqrt{x}$ and $\sqrt {x + 2} \approx \sqrt{x}$. Thus, $f\left( x \right) \to 0$ as $x \to \infty $. So, $f\left( x \right)$ converges. Therefore, the sequence also converges. Now, we find the limit of the sequence: $\mathop {\lim }\limits_{n \to \infty } {a_n} = \mathop {\lim }\limits_{n \to \infty } \left( {\sqrt {n + 1} - \sqrt {n + 2} } \right)$ $ = \mathop {\lim }\limits_{n \to \infty } \left( {\sqrt {n + 1} - \sqrt {n + 2} } \right)\dfrac{{\left( {\sqrt {n + 1} + \sqrt {n + 2} } \right)}}{{\left( {\sqrt {n + 1} + \sqrt {n + 2} } \right)}}$ $ = \mathop {\lim }\limits_{n \to \infty } \dfrac{{n + 1 - \left( {n + 2} \right)}}{{\sqrt {n + 1} + \sqrt {n + 2} }} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{ - 1}}{{\sqrt {n + 1} + \sqrt {n + 2} }} = 0$ Thus, the sequence converges and its limit is $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.