Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - Chapter 4 Review Exercises - Page 345: 78

Answer

$$f\left( t \right) = - \frac{8}{{{{\left( {t + 3} \right)}^2}}}{\text{ and }}a = 1$$

Work Step by Step

$$\eqalign{ & 2 + \int_a^x {f\left( t \right)} dt = \frac{8}{{x + 3}}{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ 2 \right] + \frac{d}{{dx}}\left[ {\int_a^x {f\left( t \right)} dt} \right] = \frac{d}{{dx}}\left[ {\frac{8}{{x + 3}}} \right] \cr & 0 + f\left( x \right) = - \frac{8}{{{{\left( {x + 3} \right)}^2}}} \cr & {\text{Let }}x = t \cr & {\text{ }}f\left( t \right) = - \frac{8}{{{{\left( {t + 3} \right)}^2}}} \cr & {\text{Substitute }}f\left( t \right) = - \frac{8}{{{{\left( {t + 3} \right)}^2}}}{\text{ into }}\left( {\bf{1}} \right) \cr & 2 + \int_a^x {\left[ { - \frac{8}{{{{\left( {t + 3} \right)}^2}}}} \right]} dt = \frac{8}{{x + 3}} \cr & {\text{Integrating}} \cr & 2 + \left[ {\frac{8}{{t + 3}}} \right]_a^x = \frac{8}{{x + 3}} \cr & 2 + \frac{8}{{x + 3}} - \frac{8}{{a + 3}} = \frac{8}{{x + 3}} \cr & {\text{Solve for }}a \cr & 2 - \frac{8}{{a + 3}} = 0 \cr & \frac{8}{{a + 3}} = 2 \cr & 2a + 6 = 8 \cr & a = 1 \cr & {\text{Therefore,}} \cr & f\left( t \right) = - \frac{8}{{{{\left( {t + 3} \right)}^2}}}{\text{ and }}a = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.