Answer
Free fall velocity at a time t is given by
$v(t) = g*t$ where g is gravity $g= 9.81 m/s^2$
Equation of motion is given by
$s(t) = -0.5*g*t^2+s(0)$
$v(t) = 24 m/s$
$t = \large \frac{24}{9.81}$
$t = 2.44sec$
When rock strikes the ground height $s(t)$ becomes zero
$s(0) = 0.5*9.81*2.44^2$
$s(0) = 11.96m\approx12m$
Hence the rock was dropped from 12m
Work Step by Step
Free fall velocity at a time t is given by
$v(t) = g*t$ where g is gravity $g= 9.81 m/s^2$
Equation of motion is given by
$s(t) = -0.5*g*t^2+s(0)$
$v(t) = 24 m/s$
$t = \large \frac{24}{9.81}$
$t = 2.44sec$
When rock strikes the ground height $s(t)$ becomes zero
$s(0) = 0.5*9.81*2.44^2$
$s(0) = 11.96m\approx12m$
Hence the rock was dropped from 12m