Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - Chapter 4 Review Exercises - Page 345: 73

Answer

$$\frac{121}{5}$$

Work Step by Step

\[ \int_{0}^{1}(1+2 x)^{4} d x \] Substitute $u=2 x+1$ and $d u =2 d x\Longrightarrow \frac{1}{2} d u=d x$ Substituting $0=x$ in $1+2 x=u$ gives us $1=u$ Substituting $1=x$ in $1+2 x=u$ gives us $3=u$ Limits of integration will change from $\int_{0}^{1}$ to $\int_{1}^{3}$ $=\frac{1}{2} \int_{1}^{3} u^{4} d u$ $=\frac{1}{2}\left[\frac{u^{5}}{5}\right]_{1}^{3}$ $=\left[-\frac{1^{5}}{5}+\frac{3^{5}}{5}\right]\frac{1}{2}$ $=\left[-\frac{1}{5}+\frac{243}{5}\right]\frac{1}{2}$ $=\left[\frac{242}{5}\right]\frac{1}{2}$ $=\frac{121}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.