Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - Chapter 4 Review Exercises - Page 345: 60

Answer

\[ -2-t-\cos 2 t=s(t) \]

Work Step by Step

The velocity function is an integral part of the acceleration function \[ v(t)=\int a(t) d t=2 \sin 2 t+C \] \[ v(0)=-1=C \] Determine $C$ using $v(0)=-1$ \[ -1+2 \sin 2 t=v(t) \] Conclusion \[ s(t)=\int v(t) d t=-t-\cos 2 t+C \] The position function is an integral part of the velocity function \[ s(0)=-1+C=-3 \Rightarrow -2=C \] Determine $C$ using $s(0)=-3$ \[ -2-t-\cos 2 t=s(t) \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.