Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - Chapter 4 Review Exercises - Page 345: 67

Answer

$\text{displacement = -6}$ $\text{distance = $\frac{13}{2}$}$

Work Step by Step

$\text {It is given that}$ \begin{align} a(t) = -2m/s^2; v_0=3m/s; 1\leq t \leq 4 \end{align} $\text {First, we have to find v(t):}$ \begin{align} v(t) = \int a(t) \ dt = -2t + C \end{align} $\text {By applying the given initial condition:}$ \begin{align} v(0) = -2 \times 0 +C = 3 \Rrightarrow C = 3 \Rrightarrow v(t) = -2t+3 \end{align} $\text {Now, we can calculate the displacement and distance:}$ \begin{align} & displacement = \int_1^4 (3-2t) \ dt = \left[ 3t-t^2\right]_1^4 = -6 \\ & distance = \int_1^4 |3-2t| \ dt = \int_1^{1.5} (3-2t) \ dt + \int_{1.5}^4 (-3+2t) \ dt =\\ & = \left[ 3t-t^2\right]_1^{1.5} + \left[ -3t+t^2\right]_{1.5}^4 = \frac{1}{4}+\frac{25}{4} = \frac{13}{2} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.