Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - Chapter 4 Review Exercises - Page 345: 68

Answer

$\text{displacement = distance = $\frac{204}{25}$}$

Work Step by Step

$\text {It is given that}$ \begin{align} a(t) = \frac{1}{\sqrt{5t+1}}; v_0 = 2m/s; 0\leq t \leq 3 \end{align} $\text {First, we have to find v(t):}$ \begin{align} v(t) = \int a(t) \ dt = \int \frac{1}{\sqrt{5t+1}} \ dt \end{align} $\text {Apply u = 5t + 1 $\Rrightarrow$ du =5 dt:}$ \begin{align} v(t) = \frac{1}{5} \int \frac{1}{\sqrt u} \ du = \frac{2}{5} u^{\frac{1}{2}} = \frac{2}{5} \sqrt {5t+1} + C \end{align} $\text {By applying the given initial condition:}$ \begin{align} v(0) = \frac{2}{5} \sqrt 1 + C = 2 \Rrightarrow C = \frac{8}{5} \Rrightarrow v(t) = \frac{2}{5} \sqrt {5t+1} +\frac{8}{5} \end{align} $\text {Now we can calculate the dispalcement and distance:}$ \begin{align} displacement = \int_0^3 \left(\frac{2}{5} \sqrt {5t+1} +\frac{8}{5} \right) \ dt = \int_0^3 \frac{2}{5} \sqrt {5t+1} \ dt + \frac{24}{5} \end{align} $\text {Apply u = 5t + 1 $\Rrightarrow$ du =5 dt:}$ \begin{align} displacement =\frac{2}{25} &\int_1^{16} \sqrt u \ du + \frac{24}{5} = \frac{2}{25} \left[\frac{2}{3} u^{\frac{3}{2}}\right]_1^{16} + + \frac{24}{5} = \\ & = \frac{2}{25} \times 42 + \frac{24}{5} = \frac{204}{25} \end{align} \begin{align} distance = \int_0^3 |\frac{2}{5} \sqrt {5t+1} +\frac{8}{5} | \ dt = \int_0^3 \left(\frac{2}{5} \sqrt {5t+1} +\frac{8}{5} \right) \ dt = \frac{204}{25} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.