Answer
$$-\frac{506}{15}$$
Work Step by Step
Rewrite integral
$\int_{9}^{4}(-u+4) \sqrt{u} d u$
$-x+4=u$ and $-d x=d u$
$\int_{4}^{9}(-4+u) \sqrt{u} d u$
Expand brackets
\[
\int_{9}^{4} -4 u^{1 / 2}+ u^{3 / 2} d u
\]
$$-\frac{506}{15}$$