Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.9 Evaluating Definite Integrals By Substitution - Exercises Set 4.9 - Page 340: 28

Answer

$$\frac{2}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /4} {\sqrt {\tan x} {{\sec }^2}x} dx \cr & u = \tan x,{\text{ then }}du = {\sec ^2}xdx \cr & {\text{With this substitution}}{\text{,}} \cr & {\text{if }}x = \pi /4,{\text{ }}u = \tan \left( {\pi /4} \right) = 1 \cr & {\text{if }}x = 0,{\text{ }}u = \tan \left( 0 \right) = 0 \cr & {\text{so}} \cr & \int_0^{\pi /4} {\sqrt {\tan x} {{\sec }^2}x} dx = \int_0^1 {\sqrt u } du \cr & = \int_0^1 {{u^{1/2}}du} \cr & {\text{find the antiderivative }} \cr & = \left( {\frac{{{u^{3/2}}}}{{3/2}}} \right)_0^1 \cr & = \frac{2}{3}\left( {{u^{3/2}}} \right)_0^1 \cr & {\text{part 1 of fundamental theorem of calculus}} \cr & = \frac{2}{3}\left( {{{\left( 1 \right)}^{3/2}} - {{\left( 0 \right)}^{3/2}}} \right) \cr & = \frac{2}{3}\left( 1 \right) \cr & = \frac{2}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.