Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.9 Evaluating Definite Integrals By Substitution - Exercises Set 4.9 - Page 340: 16

Answer

$$2\pi $$

Work Step by Step

$$\eqalign{ & \int_{ - 3}^1 {\sqrt {3 - 2x - {x^2}} } dx;{\text{ }}u = x + 1 \cr & {\text{Completing the square}} \cr & 3 - 2x - {x^2} = 4 - {\left( {x + 1} \right)^2} \cr & = \int_{ - 3}^1 {\sqrt {4 - {{\left( {x + 1} \right)}^2}} } dx \cr & {\text{Let }}u = x + 1,{\text{ }}du = dx, \cr & {\text{The new limits of integration are:}} \cr & x = 1{\text{ }} \Rightarrow u = 1 + 1 = 2 \cr & x = - 3{\text{ }} \Rightarrow u = - 3 + 1 = - 2 \cr & {\text{Apply the substitution}} \cr & \int_{ - 3}^1 {\sqrt {4 - {{\left( {x + 1} \right)}^2}} } dx = \int_{ - 2}^2 {\sqrt {4 - {u^2}} } du \cr & {\text{The integral of the form }}\int_{ - a}^a {\sqrt {{a^2} - {u^2}} du} ,{\text{ represents a semicircle}} \cr & {\text{centered at the origin with radius }}a,{\text{ then the geometry formula}} \cr & {\text{for the area is }}\int_{ - a}^a {\sqrt {{a^2} - {u^2}} du} = \frac{1}{2}\pi {a^2},{\text{ therefore}} \cr & {\text{ }} = \frac{1}{2}\pi {\left( 2 \right)^2} \cr & {\text{ }} = 2\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.