Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.9 Evaluating Definite Integrals By Substitution - Exercises Set 4.9 - Page 340: 14

Answer

$$2\pi $$

Work Step by Step

$$\eqalign{ & \int_0^2 {x\sqrt {16 - {x^4}} dx} ;{\text{ }} \cr & {\text{Let }}u = {x^2},{\text{ }}du = 2xdx,{\text{ }}xdx = \frac{1}{2}du \cr & {\text{The new limits of integration are:}} \cr & x = 2{\text{ }} \Rightarrow u = {\left( 2 \right)^2} = 4 \cr & x = 0{\text{ }} \Rightarrow u = {\left( 0 \right)^2} = 0 \cr & {\text{Apply the substitution}} \cr & \int_0^2 {x\sqrt {16 - {x^4}} dx} = \int_0^4 {\sqrt {{4^2} - {u^2}} \left( {\frac{1}{2}} \right)} du \cr & {\text{ }} = \frac{1}{2}\int_0^4 {\sqrt {{4^2} - {u^2}} } du \cr & {\text{The integral of the form }}\int_0^a {\sqrt {{a^2} - {u^2}} du} ,{\text{ represents a part of a circle}} \cr & {\text{centered at the origin with radius }}a{\text{ in the first quadrant}},{\text{ then the }} \cr & {\text{geometry formula}} \cr & {\text{for the area is }}\int_0^a {\sqrt {{a^2} - {u^2}} du} = \frac{1}{4}\pi {a^2},{\text{ therefore}} \cr & {\text{ }}\frac{1}{2}\int_0^4 {\sqrt {{4^2} - {u^2}} } du = \frac{1}{2}\left( {\frac{1}{4}\pi {{\left( 4 \right)}^2}} \right) \cr & {\text{ }} = 2\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.