Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.9 Evaluating Definite Integrals By Substitution - Exercises Set 4.9 - Page 340: 11

Answer

$$ - \frac{1}{{48}}$$

Work Step by Step

$$\eqalign{ & \int_{ - 2}^{ - 1} {\frac{x}{{{{\left( {{x^2} + 2} \right)}^3}}}dx} \cr & u = {x^2} + 2,{\text{ then }}du = 2xdx,{\text{ }}\frac{1}{2}du = xdx \cr & {\text{With this substitution}}{\text{,}} \cr & {\text{if }}x = - 1,{\text{ }}u = {\left( { - 1} \right)^2} + 2 = 3 \cr & {\text{if }}x = - 2,{\text{ }}u = {\left( { - 2} \right)^2} + 2 = 6 \cr & {\text{so}} \cr & \int_{ - 2}^{ - 1} {\frac{x}{{{{\left( {{x^2} + 2} \right)}^3}}}dx} = \int_6^3 {\frac{1}{{{u^3}}}\left( {\frac{1}{2}du} \right)} \cr & = \frac{1}{2}\int_6^3 {{u^{ - 3}}du} \cr & {\text{find the antiderivative by the power rule}} \cr & = \frac{1}{2}\left( {\frac{{{u^{ - 2}}}}{{ - 2}}} \right)_6^3 \cr & = - \frac{1}{4}\left( {\frac{1}{{{u^4}}}} \right)_6^3 \cr & {\text{part 1 of fundamental theorem of calculus}} \cr & = - \frac{1}{4}\left( {\frac{1}{{{{\left( 3 \right)}^2}}} - \frac{1}{{{{\left( 6 \right)}^2}}}} \right) \cr & = - \frac{1}{4}\left( {\frac{1}{9} - \frac{1}{{36}}} \right) \cr & = - \frac{1}{4}\left( {\frac{1}{{12}}} \right) \cr & = - \frac{1}{{48}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.