Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.9 Evaluating Definite Integrals By Substitution - Exercises Set 4.9 - Page 340: 15

Answer

$$ - \frac{1}{8}\pi $$

Work Step by Step

$$\eqalign{ & \int_{\pi /3}^{\pi /2} {\sin \theta \sqrt {1 - 4{{\cos }^2}\theta } } d\theta ;{\text{ }}u = 2\cos \theta \cr & {\text{Let }}u = 2\cos \theta ,{\text{ }}du = - 2\sin \theta d\theta ,{\text{ }}\sin \theta d\theta = - \frac{1}{2}du \cr & {\text{The new limits of integration are:}} \cr & x = \pi /2{\text{ }} \Rightarrow u = 2\cos \left( {\pi /2} \right) = 0 \cr & x = \pi /3{\text{ }} \Rightarrow u = 2\cos \left( {\pi /2} \right) = 1 \cr & {\text{Apply the substitution}} \cr & \int_{\pi /3}^{\pi /2} {\sin \theta \sqrt {1 - 4{{\cos }^2}\theta } } d\theta = \int_0^1 {\sqrt {1 - {u^2}} \left( { - \frac{1}{2}} \right)} du \cr & {\text{ }} = - \frac{1}{2}\int_0^1 {\sqrt {1 - {u^2}} } du \cr & {\text{The integral of the form }}\int_0^1 {\sqrt {1 - {u^2}} du} ,{\text{ represents a part of a circle}} \cr & {\text{centered at the origin with radius }}a{\text{ in the first quadrant}},{\text{ then }} \cr & {\text{ }} = - \frac{1}{2}\left( {\frac{1}{4}\pi {{\left( 1 \right)}^2}} \right) \cr & {\text{ }} = - \frac{1}{8}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.