Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 426: 68

Answer

$1-cos(1)$

Work Step by Step

$\int_{0}^{\pi/2}cos~x~sin(sin~x)~dx$ Let $u = sin~x$ $\frac{du}{dx} = cos~x$ $dx = \frac{du}{cos~x}$ When $x = 0$, then $u = 0$ When $x = \frac{\pi}{2}$, then $u = 1$ $\int_{0}^{1} cos~x~sin(u)~\frac{du}{cos~x}$ $= \int_{0}^{1}sin(u)~du$ $= -cos~u~\vert_{0}^{1}$ $= -cos(1)-[-cos(0)]$ $= 1-cos(1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.