Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 426: 27

Answer

$\frac{1}{4}{\tan ^4}\theta + C$

Work Step by Step

$$\eqalign{ & \int {{{\sec }^2}\theta } {\tan ^3}\theta d\theta \cr & = \int {{{\tan }^3}\theta {{\sec }^2}\theta } d\theta \cr & {\text{Let }}u = \tan \theta ,{\text{ then }}du = {\sec ^2}\theta d\theta \cr & {\text{Applying the substitution}}{\text{, we obtain}} \cr & \int {{{\tan }^3}\theta {{\sec }^2}\theta } d\theta = \int {{u^3}} du \cr & {\text{Integrate apply the power rule }}\int {{u^n}du} = \frac{{{u^{n + 1}}}}{{n + 1}}{\text{ + C }} \cr & \int {{u^3}} du = \frac{1}{4}{u^4} + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}u = \tan \theta \cr & = \frac{1}{4}{\left( {\tan \theta } \right)^4} + C \cr & = \frac{1}{4}{\tan ^4}\theta + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.