Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 426: 29

Answer

$\frac{1}{{12}}{\left( {{x^2} + \frac{2}{x}} \right)^6} + C$

Work Step by Step

$$\eqalign{ & \int {\left( {x - \frac{1}{{{x^2}}}} \right)} {\left( {{x^2} + \frac{2}{x}} \right)^5}dx \cr & {\text{Let }}u = {x^2} + \frac{2}{x},{\text{ then }}du = \left( {2x - \frac{2}{{{x^2}}}} \right)dx \cr & du = 2\left( {x - \frac{1}{{{x^2}}}} \right)dx \cr & \frac{1}{2}du = \left( {x - \frac{1}{{{x^2}}}} \right)dx \cr & {\text{Applying the substitution}} \cr & \int {{{\left( {{x^2} + \frac{2}{x}} \right)}^5}} \left( {x - \frac{1}{{{x^2}}}} \right)dx = \int {{u^5}} \left( {\frac{1}{2}} \right)du \cr & = \frac{1}{2}\int {{u^5}} du \cr & {\text{Integrate apply the power rule }}\int {{u^n}du} = \frac{{{u^{n + 1}}}}{{n + 1}}{\text{ + C }} \cr & \frac{1}{2}\int {{u^5}} du = \frac{1}{2}\left( {\frac{{{u^6}}}{6}} \right) + C \cr & = \frac{1}{{12}}{u^6} + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}u = {x^2} + \frac{2}{x} \cr & = \frac{1}{{12}}{\left( {{x^2} + \frac{2}{x}} \right)^6} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.