Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 426: 31

Answer

$\frac{2}{{15}}{\left( {2 + 3{e^r}} \right)^{5/2}} + C$

Work Step by Step

$$\eqalign{ & \int {{e^r}{{\left( {2 + 3{e^r}} \right)}^{3/2}}} dr \cr & {\text{Let }}u = 2 + 3{e^r},{\text{ then }}du = 3{e^r}dr,{\text{ }}{e^r}dr = \frac{1}{3}du \cr & {\text{Applying the substitution}} \cr & \int {{{\left( {2 + 3{e^r}} \right)}^{3/2}}} {e^r}dr = \int {{u^{3/2}}} \left( {\frac{1}{3}} \right)du \cr & = \frac{1}{3}\int {{u^{3/2}}} du \cr & {\text{Integrate apply the power rule }}\int {{u^n}du} = \frac{{{u^{n + 1}}}}{{n + 1}}{\text{ + C }} \cr & = \frac{1}{3}\left( {\frac{{{u^{5/2}}}}{{5/2}}} \right) + C \cr & = \frac{2}{{15}}{u^{5/2}} + C \cr & {\text{Write in terms of }}r,{\text{ substitute }}u = 2 + 3{e^r} \cr & = \frac{2}{{15}}{\left( {2 + 3{e^r}} \right)^{5/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.