Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 426: 30

Answer

$\frac{1}{a}\ln \left| {ax + b} \right| + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{ax + b}}} ,{\text{ }}a \ne 0 \cr & {\text{Let }}u = ax + b,{\text{ then }}du = adx,{\text{ }}dx = \frac{1}{a}du,{\text{ then substituting}} \cr & \int {\frac{{dx}}{{ax + b}}} = \int {\frac{1}{u}\left( {\frac{1}{a}} \right)du} \cr & = \int {\frac{1}{u}\left( {\frac{1}{a}} \right)du} \cr & = \frac{1}{a}\int {\frac{1}{u}du} \cr & {\text{Integrate }} \cr & = \frac{1}{a}\ln \left| u \right| + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}u = ax + b \cr & = \frac{1}{a}\ln \left| {ax + b} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.