Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 426: 66

Answer

$\arctan \left( e \right) - \frac{\pi }{4}$

Work Step by Step

$$\eqalign{ &\text{Let }I= \int_0^1 {\frac{{{e^x}}}{{1 + {e^{2x}}}}} dx \cr & = \int_0^1 {\frac{{{e^x}}}{{1 + {{\left( {{e^x}} \right)}^2}}}} dx \cr & {\text{Let }}u = {e^x},{\text{ }}du = {e^x}dx \cr & {\text{The new limits of integration are:}} \cr & x = 1 \to u = {e^1},{\text{ }}u = e \cr & x = 0 \to u = {e^0},{\text{ }}u = 1 \cr & {\text{Applying the substitution}} \cr & I = \int_1^e {\frac{{du}}{{1 + {u^2}}}} \cr & {\text{Integrate }} \cr & I= \left[ {\arctan u} \right]_1^e \cr & {\text{Evaluating the limits of integration}} \cr & I = \left[ {\arctan \left( e \right) - \arctan \left( 1 \right)} \right] \cr & = \arctan \left( e \right) - \frac{\pi }{4} \approx 0.4328 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.