Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 426: 37

Answer

$ - \frac{1}{{\ln 5}}\cos \left( {{5^t}} \right) + C$

Work Step by Step

$$\eqalign{ & \int {{5^t}\sin \left( {{5^t}} \right)} dt \cr & {\text{Let }}u = {5^t},{\text{ then }}du = {5^t}\left( {\ln 5} \right)dt,{\text{ }}\frac{1}{{\ln 5}}du = {5^t}dt \cr & {\text{Applying the substitution}} \cr & \int {{5^t}\sin \left( {{5^t}} \right)} dt = \int {\sin u} \left( {\frac{1}{{\ln 5}}} \right)du \cr & = \frac{1}{{\ln 5}}\int {\sin u} du \cr & {\text{Integrate }} \cr & = \frac{1}{{\ln 5}}\left( { - \cos u} \right) + C \cr & = - \frac{1}{{\ln 5}}\cos u + C \cr & {\text{Write in terms of }}t,{\text{ substitute }}u = {5^t} \cr & = - \frac{1}{{\ln 5}}\cos \left( {{5^t}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.