Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises - Page 426: 38

Answer

$\frac{1}{2}\ln \left| {1 + {{\sin }^2}\theta } \right| + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sin \theta \cos \theta }}{{1 + {{\sin }^2}\theta }}} d\theta \cr & {\text{Let }}u = 1 + {\sin ^2}\theta ,{\text{ then by the chain rule }}du = 2\sin \theta \cos \theta d\theta \cr & \frac{1}{2}du = \sin \theta \cos \theta d\theta \cr & {\text{Applying the substitution}} \cr & \int {\frac{{\sin \theta \cos \theta }}{{1 + {{\sin }^2}\theta }}} d\theta = \int {\frac{1}{u}\left( {\frac{1}{2}} \right)} du \cr & = \frac{1}{2}\int {\frac{1}{u}} du \cr & {\text{Integrate }} \cr & = \frac{1}{2}\ln \left| u \right| + C \cr & {\text{Write in terms of }}t,{\text{ substitute }}u = 1 + {\sin ^2}\theta \cr & = \frac{1}{2}\ln \left| {1 + {{\sin }^2}\theta } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.