Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 385: 8

Answer

Vertex: $(1.25,26.25)$ Vertical intercept: $(0,20)$ Horizontal intercepts: $(-1.31,0),(3.81,0)$

Work Step by Step

Given $$ f(x)=-4 x^2+10 x+20. $$ The parabola is in its standard form, $f(x) = ax^2+bx+c$. The values of the constants are: $$ \begin{aligned} a&=-4 \\ b&=10 \\ c&=20. \end{aligned} $$ Find the $x$ and $y$ values of the vertex. $$ \begin{aligned} x&=\frac{-b}{2a} \\ x&=\frac{-(10)}{2(-4)} \\ x&=1.25\\ y&= -4\cdot (1.25)^2+10\cdot (1.25)+20\\ &= 26.25. \end{aligned} $$ The vertex is $(1.25,26.25)$. The horizontal intercept is found by setting the $y$ component of the parabola to zero and solving for $x$. $$ \begin{aligned} 3 x^2-18 x+15&=0 \\ \frac{3x^2-18 x+15}{3}&= 0\\ x^2-6 x+5&= 0 \\ x^2-5 x-x+5&= 0 \\ x(x-5)-1(x-5)&= 0\\ (x-5)(x-1)&= 0\\ \end{aligned} $$ We have: $$ \begin{aligned} & x=\frac{-(10) \pm \sqrt{(10)^2-4(-4)(20)}}{2(-4)} \\ & x=-\frac{-10 \pm \sqrt{420}}{8}. \end{aligned} $$ This gives: $$ \begin{aligned} x&=-\frac{-10 + \sqrt{420}}{8} \\ x&\approx-1.3117\\ x&=-\frac{-10 - \sqrt{420}}{8} \\ x&\approx 3.8117. \end{aligned} $$ The vertical intercepts are $(-1.31,0)$ and $(3.81,0)$. The graph has a vertical intercept for $x= 0$ and $y = c = 20$. The vertical intercept is $(0,20)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.