Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 385: 16

Answer

a) $\$420$ b) The vertex: $(15,410)$ c) About $95$

Work Step by Step

Let's note the variable by $x$. Given \begin{equation} C(x)=\frac{2}{5} x^2-12 x+500,\\ a= 0.4, b= -12, c= 500. \end{equation} a) Set $x= 20$ to find the cost of producing $20$ backpacks. \begin{equation} \begin{aligned} C(20) & =\frac{2}{5} \cdot 20^2-12 \cdot 20+500 \\ & =420. \end{aligned} \end{equation} b) To find the vertex of the cost function, we use $a= 0.4$ and $b= -12$ into the following formula. $$ \begin{aligned} & x=\frac{-b}{2 a}=\frac{-(-12)}{2(0.4)}=15 \\ & y=0.4 \cdot 15^2-12\cdot 15+500=410. \end{aligned} $$ The vertex is $(15,410)$. The means that the minimum cost of producing $15$ backs is about $\$410$. c) Set $C(x)= 3000$ to find the values of $x$. $$ \begin{aligned} & \frac{0.4 x^2-12 x+500}{0.4}=\frac{3000}{0.4} \\ & x^2-30 x+1250=7500\\ & x^2-30 x+1250-7500=0\\ & x^2-30 x-6250=0. \end{aligned} $$ $$ \begin{aligned} x& =\frac{-(-30) \pm \sqrt{(-30)^2-4 \cdot (-6250)}}{2} \\ & =\frac{30 \pm \sqrt{25900}}{2}\\ \end{aligned} $$ $$ \begin{aligned} x & =\frac{30 - \sqrt{25900}}{2} \\ & \approx-65.47 \\ x & =\frac{30 + \sqrt{25900}}{2} \\ & \approx 95.47 \end{aligned} $$ This result shows that the school can get about $95$ backpacks with a budget of $\$3000$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.